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Abstract

The improper disposal of plastic waste has led to an abundance of plastics in the oceans,

increasing at an exponential rate, introducing a wide range of toxins along with a potential global

health crisis across the entire marine and terrestrial food chain. However, the field of

microplastic pollution prediction via data modeling systems is still in the early stages, and

currently, there are no comprehensive, high resolution, three-dimensional trajectory modeling

systems that clearly show patterns of plastic pollution distribution from the surface of the ocean,

through the mid-water column, and to the ocean floor. This system was developed to simulate the

3D trajectories of individual plastic particles using a Lagrangian model, which utilizes recurrent

neural networks trained with data from various prominent factors within specific regimes of

ocean depths obtained from several different sources: experimentally derived data,

formula-derived calculations, and peer-reviewed literature. Particle shape, size, material density,

and surface characteristics were also considered and modulated to create a more extensible

model. Gravitational descent rate was calculated at each vertical depth layer based on matrices

determining the effect of various internal and external factors on particle downward trajectories.

These matrices were informed by a sensitivity analysis, allowing the optional entry of a custom

range of input values, with presets determined by a weighted median of publicly and

experimentally sourced data. Recurrent neural networks were then used to post-process model

output data for later use in spatial-mapping predictions. Particle density distribution maps were

generated, highlighting regions of plastics aggregation, predominantly near gyres. After

verifying the model using comparisons to peer-reviewed publications of surface microplastic

mapping data, it was determined that this novel technique demonstrates a >90% probability of

accurately predicting ocean-floor accumulation zones, with a p-value of 10-4. This system lays

the groundwork for future studies regarding accurate ocean floor microplastic aggregation

hot-spot zone prediction.

Background Research

As recent as November 2019, MIT and Woods Hole held one of the first worldwide

conferences on the concept of modeling microplastic movements within the ocean on a large

scale. To date, there have been no published models that have successfully incorporated all of the

key factors influencing microplastic movement with high accuracy. This is a field that requires
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significant attention because currently, a global pelagic and benthic microplastic distribution

model does not yet exist, despite the increasing rate at which this problem is expanding.

In 2020, over 14 million metric tons of plastic pollution entered the ocean. This problem

is growing at a faster rate than the global production of plastics itself. According to the American

Chemistry Council, by the year 2050, it is predicted that 756 million tons of plastics will be

produced. Synthetic polymers are known to cause a myriad of health effects including cancers,

heart and lung defects, and more, even with exposure in trace amounts. Yet, continued exposure

at ever-increasing rates is likely to affect a host of new pathologies in the years to come not only

in human populations but throughout the natural living world if this problem is not remediated

immediately. This is a problem of particular concern at the base of the marine food chain. As

such, it is necessary to address this issue on a global scale, with a multi-pronged approach

comprised of both prevention, and cleanup efforts. However, to ensure that costly, coordinated

resources are used most effectively, it is essential to determine regions on the ocean floor with

the highest concentrations of the most toxic microplastic particles. At present, given the lack of

funding for extensive in-situ marine data collection, the only option is to create an accurate,

high-resolution predictive spatial mapping model of microplastic distribution on the ocean floor,

using computational resources.

The Lagrangian approach used in this simulation model tracks the predicted trajectories

of individual particles from the sea surface to the ocean floor, across twenty-three years of data,

considering all significant factors of influence acting upon the particle and inherent to the

particle itself. One factor which has already been identified to have a large impact on the sinking

rates of microplastics is the density changes that occur after binding with organic chemicals, as

well as organisms, such as zooplankton or phytoplankton. The aggregation of plastic particles on

the ocean floor potentially correlates with the level of insolation in a particular area. Regions that

receive a large amount of sunlight are more conducive to the growth of algae. This has led to

cases of microalgal blooms occurring on a fairly regular basis in marine environments around the

world.

In these areas, plastics are more likely to bind to algae, and sink to the ocean floor at a

faster rate than particles that are not biofilm-coated, or otherwise bound to biologicals

(Khatmullina & Chubarenko, 2018). Not only would the breakdown of plastics into

microplastics raise the cumulative surface area of the plastics, but the abundance of algae
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would also mean that biologicals are much more likely to attach to the surface of these

particles. Animals on the bottom of the ocean which rely on marine ‘snow’ as their primary

source of sustenance would consume all of these hazardous particles, which could potentially

cause mass toxicity events, as well as localized extinctions of certain species in some areas.

Furthermore, contamination of any kind in benthic organisms will accumulate in higher

organisms through biomagnification and have the potential to spread to terrestrial

environments through the fishery industry. Various satellites use image processing techniques

to isolate regions where chlorophyll-associated green wavelengths are prevalent. These

wavelengths will infer an abundance of plant life containing chlorophyll, such as marine

algae, which is the most common phytoplankton, and among the most common life forms in

the ocean.

Large amounts of algae in certain areas of the ocean will lead to the microplastics

gaining density in these particular regions at a faster rate than others. The biochemical

components of algae cells have, on average, higher density than most common, synthetic

polymers. The composition of the dry weight of an algae cell is roughly 70% protein, 10%

lipid, 10% nucleic acid, and 5% carbohydrate, and inorganics are approximately 5% of the

cell weight. Protein has a density of 1.35 g/cm3, which is a higher density than ocean water,

which is 1.03 g/cm3. The plastics that are being used in the current simulation have a range of

densities from 0.92 to 1.38 g/cm3 (PETE, HDPE, PVC, LDPE, PP, PS, TPU, PLA). This

means that most plastics will gain density when binding with algae.

However, as the plastics with lighter densities will have a larger horizontal trajectory

on and close to the surface of the ocean, it has been predicted that these particles may be

deposited on beaches or areas close to continental shelves. According to some preliminary

results from running the mapping simulation, most of the plastics will be deposited on

continental shelves close to the shore of the ocean. These plastics would have the largest

detrimental effect on human health as those areas are where many animals who have a great

effect on the marine food chain reside, as opposed to plastics that have sunk to the bottom of

the ocean floor and have been buried by the constant deposition of marine snow.
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Methods

This is the third phase of a three-year project. Previous work involved developing an

ROV to identify microplastics (plastics smaller than 5mm) using an infrared-based detection

system. This system was supplemented by an AI-based unnatural color detection system and a

morphology classifier. However, using an ROV to scan the ocean floor for microplastics would

not be sufficiently scalable, and using a swarm of ROVs with a widely distributed network

would be an overwhelmingly expensive project, unlikely to be funded any time soon. Spot

verification of microplastic particles using real-world ocean floor sampling would be the only

way to confirm the accuracy of the system. However, there are very few institutions with active

research vessel programs, with coring and/or sediment trapping, and most don’t focus on

microplastics. The past year, Woods Hole has not been able to conduct this research due to the

pandemic.

In lieu of a costly global ocean floor sampling approach to directly determine the density

distribution of microplastics, a computer-simulation-based method to model and predict the

location of microplastics would be absolutely necessary. To simulate how microplastic particles

sink to the ocean floor, data assets from multiple sources were used to calculate particle

trajectories at different layers in the ocean, under numerous environmental conditions, and in

consideration of different particle material properties and physical characteristics. This included

an approach that combined information from calculated values, literature reviews, and

experimentally derived data. A simulation model was developed using a comprehensive matrix

of potential influences on the final location of microplastics. This matrix contains factors such as

biological transport mechanisms, underwater turbulence such as mesoscale eddies, changes in

density due to binding with other objects, loss of mass due to abrasions, and more. New plastic

particles are periodically released into the system at various scheduled times and geographic

locations to simulate a real-world environment.

NASA’s ECCO dataset was used as the basis for current velocities across the ocean. The

dataset includes multiple buoy sensor and satellite-derived variables spanning from the year 1992

to 2015. The voxel grid system used for the model is based on NASA’s ECCO tile and depth

layer (ocean k-layer) system derived from the MIT GCM project. The model was initially run on

k=0 (the surface of the ocean) for verification against field-collected sources including the

Global Microplastics Initiative and numerous expeditions conducted by WHOI.
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For higher resolution mapping, ECCO divides the world into 13 independent tiles

A contoured distribution map was developed from the results of the simulation model and

was found to have >92% correlation to the distribution found by Woods Hole. Due to the high

accuracy, this system was then used to predict potential lower-pelagic and near benthic regions of

microplastic accumulation.
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Preliminary tile 10 simulation model based on surface current velocities

Self-generated Atlantic contoured surface particle distribution generated from the

simulation model
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This shows WHOI and SEA foundation’s distribution map based on numerous research

vessels.

Voxels can be assumed to represent a one-degree slice of the earth, segmented into fifty

discrete k-layers with variable heights (k-layers 0-10 are approximately 10 meters in depth,

whereas k layers 10-49 are variable, and gradually increase to several hundred meters, defined

within the ECCO binary files). The three-dimensional voxel units used in this simulation system

can therefore be assumed to be approximately 12321 kilometers2 (~111 kilometers in length and

width) with variable k-depths.
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Current velocities at different k-layers, in various locations, plotted from ECCO data

The potential biological influences due to biofilm attachment or biological transport

mechanisms were accounted for by tracking the abundance of chlorophyll mass (and therefore

plankton mass). The Moderate Resolution Imaging Spectroradiometer (MODIS) identities

wavelengths associated with chlorophyll mass, and infers regions of aggregation. As the

microplastics bind with algae, the overall density of the particle increases. Thus, the regions with

higher accumulations of biological organisms will correlate to an increase in particle fall

velocity. The varying levels of insolation during different times of the year lead to fluctuations in

chlorophyll distribution.

Chlorophyll mass identified using the MODIS during summer months
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Chlorophyll mass identified using the MODIS during winter months

To establish a hydrodynamic basis for particle velocity modulation, a program using

Python and OpenCV libraries for image processing and morphological feature classification was

developed. Images of plastic particles from SEM micrographs were taken, and surface

morphological features such as divots, bumps, crenellations, abrasions, and biologicals were

identified. The program was able to obtain a total abrasion count, along with area. This allows

the potential to determine the differential velocity based on plastic-type, shape, size, and density.

Based on the output, a drag coefficient was able to be created, demonstrating how likely the

hydrodynamic property was likely to affect microplastic movement and distribution.

SEM Photo #1 and surface abnormality identification output
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SEM Photo #2 and surface abnormality identification output

When unable to obtain SEM micrographs of samples, focus/z-stacking was used instead.

Numerous images of micrographs taken at various focal depths from a polarized or a light

microscope were taken and combined with a series of image processing filters and techniques,

which identified the highest contrast, sharpest areas with high thresholds (aka the most focused

areas), and stitches these regions together from each layer, thereby generating a blended,

well-focused, high-resolution composite. The composites were then post-processed using the

surface feature classification system.

An example of a focused composite of a microplastic particle
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The number of each type of surface features that were identified

Comparing each type of surface features by area
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Surface area versus feature count comparison: Comparing area of surface features

present on plastic particles by pixels2, versus the number of surface features identified (1 pixel ~

100 nm)

Three experiments were conducted to observe how microplastics reacted to various

environmental factors with homemade marine environment emulation tanks. A long-term

experiment was run over the course of several months to observe how abrasive actions alter the

morphologies of microplastics, forming abrasions, crenellations, and other surface features,

which cause micro-turbulence effects that have the potential to influence the particle downward

trajectories through various densities of saltwater. Differences in microplastic particles were

observed before and after being exposed to an abrasive environment with materials commonly

found in the ocean, such as sand and glass, within a saline environment. A medium-term,

two-month experiment to identify the accumulation of biologicals on microplastics was

conducted, along with a final, one-month-long experiment which observed the differences in the

morphology of microplastics, with various particle types, shapes, and sizes.

The key metric was the delta in the mass of the particles before and after experimental

treatment with both abrasive and biological factors. Because a microscale measurement tool was

not available, and local labs had been closed, an alternate approach was taken. A method to

repurpose materials at home had to be utilized to create a suitable replacement for a microgram
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level scale. The idea of measuring the differences in electrical output on a meter

movement/galvanometer/ammeter to be used as a makeshift microgram scale has been around

since 2000, from an article originally published in Scientific American. A more recently updated

version has been developed using pulse width modulation.

Using this galvanometer-based system, a certain amount of electricity is required to

maintain a tare point, inclusive of the sample holder. After trial and error with the Arduino

software to scale the width of the gaps between current pulses, a suitable range was found that

would allow for accurate measurements of the weights needed for the sample set of emulated

microplastic particles. When weight is added to the needle of a galvanometer, the needle is

drawn down due to gravity, and more current or pulse width must be added to return the needle

to the original position. The delta in pulse frequency and/or pulse length is linearly proportional

to the mass of the item and can be measured in comparison to objects with known weights to

calibrate the system and obtain an accurate measure of the weight. Aluminum foil was taped to

the needle as a way to hold the plastics. The tare weight from the aluminum foil was taken into

consideration as well, by measuring the amount of current based on the pulse-width modulation

(PWM) at a steady state for stabilization. The same was done with the plastics, and after

subtracting the PWM deltas, I extrapolated a set of weights, and then I subtracted the final

weight from the tare weight, and what remains is the mass of the object inferred from the

difference in PWM values.
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Using the microgram scale made from a repurposed galvanometer to measure the weights of

various plastic particles

The vertical trajectories of microplastic particles were tracked using a marine

environment emulation tank. A large glass cylinder was utilized to simulate the mid-water

column of an ocean, with motors attached to propellers connected to a microcontroller (Arduino)

to modulate simulated ocean currents. Photoresistors were placed in various ‘layers’ of the

cylinder, along with an array of LEDs arranged in a circular pattern. Plastics of different polymer

types (PETE, HDPE, PVC, LDPE, PP, PS, TPU, PLA) were prepared to represent a wide range

of shapes and sizes. As particles pass through the layer of LEDs, the slight change in light

intensity would be identifiable by the photoresistor and could be measured. Such a set-up on

multiple different layers could be used to determine how fast the microplastics are sinking

between a predetermined length, and could thus be scaled up to fit the entire ocean. Multiple

salinities were tested to obtain an accurate range that could be applied across the entire ocean.
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Particle velocity in seconds, in water with various salinities

Tracking the trajectory of the microplastics as they descend through a vertical water column

To estimate the microplastic particle descent velocity, a finite element analysis was run to

attempt to model the plastics’ sinking rates and to see what the process of developing a model

like this would be like. The potential velocities of plastic particles were predicted using the
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Dietrich formula. Previous research papers had also been reviewed to observe the most common

rate of descents for various types of plastics. Then, experimental data was collected and

compared to the Dietrich formula. The experimental results were normalized as a result, and

standard deviation along with linear interpolation was used where needed. This all came together

to develop an appropriate consensus model.

Ws = settling velocity

v = kinematic viscosity of fluid

d = particle diameter

d* = dimensionless particle diameter

A, B, n = calibration coefficients

A simplified version of the Dietrich formula used to calculate particle fall trajectories in the simulation

model

Recurrent neural networks have been used in this project, as it excels with processing

temporal sequences such as videos and blocks of text. The RNN (recurrent neural network)

based model split the data into two categories -- 80% of the data went into the training

category and 20% into the testing category. The learning optimizer utilized in this model was

Adam with a gradual decay of the learning rate over time. To minimize the total loss,

additional data inputs were added, and outliers were removed.
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Example comparison of RNN value predictions with the true future for UVEL and VVEL
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Example accuracy and loss of an RNN that ran using a GPU over the course of a few hours.

The RNN models predicted future particle trajectories based on the data assets that were

input into the sensitivity matrix, including the hydrodynamic properties of microplastics. To

quantify the extent to which microplastic particles would be affected by the surface

microstructural characteristics, convolutional neural networks were used in conjunction with

image processing. Initially, training the CNN models took several hours to run 2000 iterations.

When the surface characteristics of the particles were classified using Keras/TensorFlow, the

results were somewhat mixed. Supplementing the object detection with an image processing

program using OpenCV had substantially better results, as well as comparative data in terms of

the number of surface features versus the area of those features. This allowed for a much better

job quantifying the likely hydrodynamic drag coefficients. The GPU version of TensorFlow 1.14

was used, as using the CPU version for a simple two-class classifier took a few days to complete,

and the accuracy did not exceed 70%. However, with the GPU version, it took 12 hours to

complete almost 200,000 iterations. The more surface features that can be classified as

erosions/abrasions, the greater the drag is. However, if the features appear to be biological in

nature, it’s likely that this is adding to the density of the particle, and while it does add to drag,

certainly, it is also likely the case that the additional density of the microorganisms cause the

particles to sink faster, despite the additional drag. In that sense, it is believed that the density has

a greater impact on the gravitational descent, as opposed to the surface characteristics, in the

pelagic/mid-water column region of the ocean.
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Sensitivity analysis models had to be established, due to the limited literature availability,

and the oversimplification of ocean dynamics in single-variable experiments. This allowed the

modulation of combinations of factors, to create numerous simulation model outputs. An

effective range of parameters was determined, including the amount of time a certain type of

plastic will remain at one k-layer, along with other environmental factors. Chubarenko placed

this value at six months, and Kvale estimated this value to be around two years. A review of

other literature yields values within this range. These parameters were modulated to determine a

scale that is realistic for plastic distribution. The Python module matplotlib is used to process

CSV outputs from the simulation model to generate high-resolution spatial maps of all plotted

data points at each specified time frame. This data can then be visualized as still images, or as

full-motion video, using FFmpeg.

Core model system architecture
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Results

The results of this simulation model are output as a series of distribution maps. After

running this model 100 times, the p-value was calculated to be around 10-4. This demonstrates

that my model is highly statistically significant.

Probability of Distribution of Microplastic Particles Based on Plastic Type/Material Density

This map shows the distribution of plastics which have been affected primarily by their

material densities.
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Probability of Distribution of Microplastic Particles Based on Biological Influences (Biofilms

and Biological Transport Mechanisms) in Summer and Winter Respectively

The two maps above display the distribution of microplastic particles based on the

movement of biological organisms during the summer and winter months, showing that seasonal

differences in distribution are substantial.
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Probability of Distribution of Microplastic Particles Based on Hydrodynamic Influences

The hydrodynamic property of a piece of plastic has the most influence on the plastic

movement in the lower half of the mid-water column, near the benthic layer of the ocean.

Probability of Distribution of Microplastic Particles Based on Particle Shape

While the shape of a particle does not have as much of an effect on the eventual location

as material density or the hydrodynamic property (which, due to the numerous surface features

present, can often show orders of magnitude differences in surface area), the simulation model

was still able to account for changes in the bulk shape of the particle.
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Probability of Distribution of Microplastic Particles Based on Particle Size

The size of the particle, when all other factors are considered equal, had the least effect

on microplastic distribution for a similar reason as the shape of the particle.

Wind UVEL/VVEL Biological
Transport

Hydrodynamics Density
Changes

Turbulent
Forces

k=0 30 50 10 5 3 2

k=1-5 0 65 15 10 7 3

k=5-10 0 60 20 10 10 10

k=10-20 0 50 15 15 15 5

k=20-30 0 40 15 30 10 5

k=30-40 0 10 3 70 5 2

k=40=50 0 5 10 75 5 5
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This is a sample sensitivity matrix for an average particle, of medium abrasion, with

relatively low maturity

This is a sample global distribution map that displays microplastic aggregation based on

the material density of the particle, based on the sensitivity matrix above

A global distribution map was created based on a sensitivity matrix of a particle with

medium abrasion, an initial material density close to seawater, and a combination of spherical

and sheet-like particles when descending through the mid-water column. In the initial simulation

outputs, it was proven that the material density of the particle had the largest effect on

microplastic distribution. Thus, the global distribution maps are based on the material density of

the particle.

Summary Average Data

Density

Biologicals -

Summer

Biologicals -

Winter Hydrodynamics Shape Size

Total Area 46925 52407 60333 43258 44255 35663

Highest

Aggregation 6675 15395 7863 1181 3961 2876

Percent 14.22% 29.38% 13.03% 2.73% 8.95% 8.06%
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The ratio between the areas of the densest region of distribution of particles was

compared against the total amount of distribution of plastics according to the particle data that

was entered into the model. This ratio was then normalized across trial runs, and a median

predictor was used as the value to compare the output of the simulation, and every trial run was

compared against the expected ideal value for each particular category of simulation.

Sample tile 10 particle distribution output from the simulation model inclusive of all

factors which influence microplastic accumulation

Sample global particle distribution output from the simulation model inclusive of all

factors which influence microplastic accumulation

The global simulation model was run, with randomized size, shape, material density,

hydrodynamic property, and biological influences. The surface microplastic distribution data

predicted by my model were compared to the published data collected over the course of decades

by WHOI (Woods Hole Oceanographic Institution) and SEA (Sea Education Association), and

seemed to be highly correlated both in terms of relative density of aggregation, and also the total
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area of the particle distribution. The predicted vertical profiles based on the trajectory simulation

model outputs of mid-water column microplastic distribution data were compared to the

biological transport data from MBARI (Monterey Bay Aquarium Research Institute), which

demonstrated that most of the plastics (in this case, especially the ones that are affected by

biological transport mechanisms) are located predominantly around k-layer 17, or around 300

meters deep. A mathematical comparison between the two models and the simulation outputs

was completed, and the statistical significance of overlap of existing data and alignment of maps

was found. However, none of these methods would give a reliable method for verifying that the

locations on the ocean floor are accurate. To do this, an ROV/AUV that automatically collects

samples could be used. These underwater vehicles can traverse the ocean floor to identify hot

spots of microplastics. However, this could only be used as a spot verification method, as using

ROVs or AUVs to search the entire ocean floor would be extremely inefficient. Another method

for identifying microplastics on the ocean floor is by using a sediment trap. This method is much

more passive than the other verification techniques, but it would give an accurate representation

of how microplastics accumulate over time.

Conclusions

The distribution maps created from the simulation model output data demonstrate

multiple key findings. Of the major factors which were studied, including material density,

particle shape and size, biological transport mechanisms, and the hydrodynamic properties of the

particle, there were two that yielded conclusive correlations to significant ocean floor

distribution patterns -- material density and seasonal biological influences. In addition, it was

found that hydrodynamic surface properties play a substantial role in particle trajectories at lower

k-levels of the ocean mid-water column.

It was shown that the material density of a plastic particle appears to have the largest

effect on plastic distribution. This is due to the fact that current velocities in near-surface pelagic

regions of the ocean play the single greatest role in oceanic transport. This is evident from

current velocity range charts. Particles that have a lower material density will remain near the

surface of the ocean for a longer period of time and will be highly affected by the current and

wind, especially when compared to particles with a higher density, which will more rapidly
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descend to the ocean floor, either from within gyres, or near sources of pollution, including

fluvial outputs, landfill barges, and nearshore factories.

One of the major findings from the biological influences simulation output distribution

was seasonal variation in plastic accumulation. The insolation in a given region plays a large role

in algae growth, and satellite imagery and sensor data of areas containing known chlorophyll

abundance. These regions are correlated to greater quantities of zooplankton/phytoplankton, and

other marine life, that consume these organisms (as well as microplastics). The combined effect

of algae binding and biofilming of microplastic surfaces and the ingestion and excretion of

microplastic particles by a multitude of base trophic feeders will tend to increase the bulk density

of microplastic particles. In addition, regions with greater biological activity tend to be

associated with a greater incidence of particle aggregation due to binding through an abundance

of organic compounds present in marine snow. As such, according to the model, the seasonal

shifts in biological activity are strongly associated with massive amounts of rapid microplastic

accumulation on the ocean floor, as can be seen in the biological influences distribution map

above. The winter vs summer clearly shows distinct differences between the particle area of

distribution that can only be explained by the seasonal effect of biological influences on

particles.

Another key finding from this study is that hydrodynamics of the microplastic particle

surfaces due to microstructural characteristics are a significant factor affecting particle trajectory.

The primary domain of ocean current velocity influences resides in the upper portion of the

water column. The velocity difference between k-layer 5 and k-layer 20, can be an order of

magnitude. Generally speaking throughout the ocean, k-layers 20 and lower, tend to have limited

ocean currents. Yet it is at these depths, that microplastic particles which have passed through the

photic zone, would presumably contain a combination of biofilms, UV radiation effects, and

other chemical and mechanical weathering. These surface features play a substantial role in bulk

material density changes and the drag coefficient of the particle. According to the surface area

versus feature count comparison chart, it was possible to classify the types of surface features

found commonly on microplastic particles using both SEM and light microscopes, along with an

image processing and CNN-based system, with a system identification/localization accuracy

exceeding 92%. Statistical analysis was performed on this dataset and was able to obtain a

p-value of 10-4. This can be correlated to the extent of the features presence, therefore, this can be
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used as a highly quantitative means of assigning and classifying particle surface morphologies,

even when the surfaces contain evidence of a combination of erosion and biological effects. In

combination with calibration experiments, this can be used to infer a drag coefficient that can be

applied to all microplastic particle types. The drag coefficient of each particle does not play a

substantial role as compared to particle shape, size, or density, where current velocity is high.

However, in the mid-water column to the benthic zone of the ocean, hydrodynamics could

potentially be the most significant factor in particle movement.

This demonstrated my hypothesis, and clearly shows a high correlation to the areas of

particle accumulation as shown in the distribution maps created by WHOI and SEA Foundation’s

decade-long study. The fact that the surface data output from my study matches with the WHOI

data with a 90% overlap accuracy, and a statistical significance of 10-4, shows that this model

could be highly accurate in predicting ocean floor microplastics as well. Future sampling studies

will confirm the assumptions and conclusions of this report based on the model output density

distribution spatial maps. In the near future, the simulation model will be confirmed by WHOI

research sediment trap data, and in conclusion, if this model is verified to be highly accurate, it

could be used for a higher resolution study, and could also be widely used in other applications

as well. Specifically for microplastics research, the level of resolution obtained from the ECCO

dataset is not very high but does provide an indication of where, on a granular level, microplastic

accumulation is most egregious, and should be addressed according to various priorities,

including impending danger to the benthic ecosystem, ability to be addressed with low-cost

cleanup efforts, the likelihood of association with other toxins such as POPs, heavy metals,

radioactivity, etc, and the general possibility of causing harm to humans and the environment at

large.

Future Considerations

Within the next year, it is expected that these various simulation model output

distribution maps will be verified using experimentally derived real-world data from sediment

trapping and sediment column collection via oceanographic research vessels. In addition, a

software interface will be created to simplify the process of modulating inputs into the

probability matrix and sensitivity analysis, to provide a service to the oceanographic community,

to collaborate on this effort. An API would also be created to share the information with outside
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oceanographers and data scientists, on applications such as GitHub and Kaggle, and/or others,

such as in conjunction with NASA’s ECCO dataset. According to a WHOI conference regarding

the topic of microplastics, more data is becoming available, so further research in the

peer-reviewed journal space will be used, including the surface distribution from WHOI’s SEA

Foundation, the volunteer-collected data from the Global Microplastics Initiative, the simulated

data from JPL’s HTC laboratories, as well as MBARI’s study regarding the abundance of

microplastics across the mid-water column by microorganisms. Furthermore, once a sediment

trap plan is in place, and other systems are in place to verify the data in specific locations, it

would be possible to do some spot verifications on the ocean floor. Additional verification can

also be done in areas where there are sediment core samples. Another major factor to consider is

the re-suspension of plastics from the ocean floor. Neutrally buoyant particles may sink down the

vertical water column until a current or a movement causes the particle to float to the surface

again.

I have already begun the process of filing a provisional patent. I have also created two

systems for collecting data from a modular automated sensor-based buoy platform, that is

capable of accurately measuring microplastic trajectories based on the emulation of particle

buoyancy in a real-world environment. This system is a more robust and advanced version of the

ROV/AUV work I had done in phase one. However, this proposed system is capable of accurate

measurements at depths of 8,000 meters. In addition, another newly invented system concept for

surface microplastic and mid-water column microplastic detection has been invented, involving

the concept of infrared light, combined with automated detection sensors, as well as cam based,

AI-enhanced image processing in a vehicle capable of being towed by research vessels as a

low-cost approach to automated microplastic collection. Intellectual property is currently being

formulated regarding both of these inventions, and it is planned that this will be the focus of

additional phases of my research. This high-resolution real-world data will not only verify my

simulation model approach but will also demonstrate significant improvements over the status

quo of sensor/equipment-based microplastic detection and quantification.

It is imperative that systems like my highly accurate particle trajectory simulation model

as well as new forms of automated sensor-based data collection systems are adopted by the

research community, and supported by governments and non-profit organizations as quickly as

possible, to take initial steps toward curbing the microplastic pollution problem. Furthermore, the
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predictive and spatial mapping capabilities could be extended for mapping trajectories of other

materials, including different types of environmental pollutants such as cargo spillage and

radioactive particulates. Through my outreach work in creating the non-profit Deep Plastics

Initiative (http://deepplastics.org/), it is my hope to continue to reach out, not only to the general

public to inform them about this grave concern, but to educate others about the latest research in

this field, and to share information and resources with the scientific community, and other

aspiring young scientists and engineers.
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